Geometric nullstellensatz and symbolic powers on arbitrary varieties

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tropical Varieties, Ideals and an Algebraic Nullstellensatz

The objective of this paper is to introduce the fundamental algebro-geometric constructions over the extended tropical semi-ring. The study of tropical varieties, co-varieties and ideals over this extension eventually yields the theorem of the weak tropical Nullstellensatz and gives an algebraic interpretation of the tropical Nullstellensatz.

متن کامل

Comparing Powers and Symbolic Powers of Ideals

We develop tools to study the problem of containment of symbolic powers I(m) in powers I for a homogeneous ideal I in a polynomial ring k[P ] in N + 1 variables over an arbitrary algebraically closed field k. We obtain results on the structure of the set of pairs (r, m) such that I(m) ⊆ I. As corollaries, we show that I2 contains I(3) whenever S is a finite generic set of points in P2 (thereby ...

متن کامل

Combinatorial Nullstellensatz Modulo Prime Powers and the Parity Argument

We present new generalizations of Olson’s theorem and of a consequence of Alon’s Combinatorial Nullstellensatz. These enable us to extend some of their combinatorial applications with conditions modulo primes to conditions modulo prime powers. We analyze computational search problems corresponding to these kinds of combinatorial questions and we prove that the problem of finding degreeconstrain...

متن کامل

Effective Nullstellensatz and Geometric Degree for Zero-dimensional Ideals

(1.1) G = A1F1 + · · ·+ AkFk where s is an integer ≥ 0. In the usual proofs of this result, one is not concerned with estimates about the degree of the Aj ’s and the exponent s. This question was considered by Brownawell [Br1] and later by N. Fitchas [Fi] and Kollár [K]. Kollár got the best estimates under the technical hypothesis deg Fj 6= 2 for j > 1. Namely it is possible to solve (1.1) with...

متن کامل

Generalized Test Ideals and Symbolic Powers

In [HH7], developing arguments in [HH5], Hochster and Huneke used classical tight closure techniques to prove a fine behavior of symbolic powers of ideals in regular rings. In this paper, we use generalized test ideals, which are a characteristic p analogue of multiplier ideals, to give a generalization of Hochster-Huneke's results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Annalen

سال: 2014

ISSN: 0025-5831,1432-1807

DOI: 10.1007/s00208-014-1011-0